If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-31n+36=0
a = 3; b = -31; c = +36;
Δ = b2-4ac
Δ = -312-4·3·36
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-23}{2*3}=\frac{8}{6} =1+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+23}{2*3}=\frac{54}{6} =9 $
| 3x+6=-2x+6 | | 14.99p-2.50=13.49p-1.00 | | 3z^2+4z–4=0 | | 4x-4=-2x^2 | | -5x+4=-76 | | -11c+8=-8c-19 | | 4.7-w=12 | | 2+8/3n=50/9 | | 19+8h=43 | | 5.5x+8=118 | | 76/15=-2(v-2/3) | | 2(x-1)=12* | | 0=2/3(v+3) | | 4x+3x+14=6(x+2) | | 3x-5-7x+5=180 | | 5(-2+x)=-10 | | 5w2+8w+3=0 | | -x^2+1028x-28000=0 | | -7(8n-7)=-56n-49 | | x-4+4x-17+x+9=90 | | x-0.15x=46 | | 3u^2–11u+8=0 | | z-82/2=6 | | 5x-5=5(x—1) | | 11c+8=-8c-19 | | -2(5+v)=-2 | | 16x2-48x+36=0 | | -b-15=21 | | 5t^2+24t–5=0 | | z−82/2=6 | | 20=6(w+6)-8w | | 80+7x-4=180 |